ADDITIVE-MULTIPLICATIVE DESCRIPTION OF EXTRATHERMODYNAMIC RELATIONS: APPLICATION TO SOLVENT EFFECT

Oldřich Pytela
Department of Organic Chemistry,
Institute of Chemical Technology, 53210 Pardubice

Accepted June 5, 1989

The paper is focused on evaluation of significance of the additive-multiplicative model of extrathermodynamic relations (linear free energy relationships) as compared with the additive model. Application of the method of conjugated deviations to a data matrix describing manifestations of solvent effects in 367 processes in solutions (6334 data) has shown that introduction of cross--terms into the additive model is statistically significant for a model with two and particularly three parameters. At the same time the calculation has provided a new set of statistical parameters for description of solvent effect with application of the additive-multiplicative model. Compared with an analogous set designated for the additive model, the new parameters show a lower mutual correlation, retaining the same nature of the properties described, i.e. polarity-acidity (PAC parameter), polarity-basicity (PBC), and polarity-polarizability (PPC).

Extrathermodynamic relations belong among the most important tools for quantitative description of dependences in organic chemistry ${ }^{1-10}$. This is true in spite of the fact that these relations do not represent a fundamental law ${ }^{11}$ but, primarily, a mathematical expression of similarities of effects of changes (perturbances) related to a standard state. The extent of similarity is different, which is indicated by comparisons of substituent effects ${ }^{2-8,10-15}$, solvent effects ${ }^{7-10,16-19}$, nucleophilicity ${ }^{6-8}$, 10,20 , and/or their interdependences ${ }^{6-8,10}$. This similarity principle is well expressed by the approximative description by the Taylor expansion ${ }^{1,6,18}$ (1)

$$
\begin{gather*}
\Delta G=\Delta G_{0}+\sum_{i=1}^{p}\left[\frac{\partial \Delta G}{\partial P_{i}}\right]_{\Delta G=\Delta G_{0}} \Delta P_{i}+\sum_{i=1}^{p} \sum_{j=1}^{p}\left[\frac{\partial^{2} \Delta G}{\partial P_{i} \partial E_{j}}\right]_{\Delta G=\Delta G_{0}} \Delta P_{i} \Delta P_{j}+ \\
+\ldots+R_{p+1}, \tag{1}
\end{gather*}
$$

where ΔG symbolizes the physical quantity measured (which most often is related to the Gibbs energy), ΔG_{0} is the same quantity in the standard state, ΔP symbolizes - in parametrical way - the extent of perturbance related to the standard state, and R_{p+1} means the error of approximation. As the expressions given in square brackets are constants, the closeness of description within a certain field is given
by the choice of the standard state and parametrization, i.e. adjustment of the ΔP values. Since the difficulties with parametrization rapidly increase with increasing number of parameters and, at the same time, the demands on number of experiments in an application increase too, the description of a dependence is almost always restricted to the first two terms in Eq. (1) with the number of parameters most often varying from one to four. Nevertheless, the neglecting of the interaction terms expressed by the third term of Eq. (1) obviously does not correspond to reality, because various manifestations of a phenomenon followed (e.g. solvent effect) are interconnected and affect each other ${ }^{18,21}$. A mathematical expression of this interaction will lead not only to a better description of the dependence but also to a better interpretation of reality in terms of the similarity relation. The product form proved to be the best e.g. in the description of effects of two substituents ${ }^{21}$. On the other hand, the application of quadratic terms ${ }^{11}$ does not bring any new effects but rather indicates an unsuitable parametrization of the linear terms or exceeding of the validity range. In the sense of these considerations it is possible to derive (from Eq. (1)) the simplest relation including the cross-terms in the form of Eq. (2)

$$
\begin{equation*}
\Delta G=a_{0}+\sum_{i=1}^{p} a_{i} \Delta P_{i}+\sum_{i=1}^{p} \sum_{j>i}^{p} a_{i j} \Delta P_{i} \Delta P_{j}+\varepsilon \tag{2}
\end{equation*}
$$

where a are the regression parameters and ε is the residual error given by the approximation used and by the experimental error of ΔG quantity.

One of the parametrization possibilities of various models of extrathermodynamic relations consists in the statistical analysis of an extensive representative set of experimental data ${ }^{13,14,17,19,20}$. In this respect a large contribution was brought by the methods of analysis of latent variables (PCA (refs ${ }^{22,23}$), FA (ref. ${ }^{23}$), PLS (ref. ${ }^{24}$), etc.) which invaded chemistry in recent years and whose development was largely initiated by chemistry. These methods are suitable for studies of parametrization of linear models, of course, without interaction terms. A more versatile method is that of conjugated deviations used earlier for parametrizations of nucleophilicity ${ }^{20}$, solvent effects ${ }^{19}$, as well as for analysis of chemical data ${ }^{25}$. This method enables the optimization of values of the independent variables ΔP in Eq. (2) with simultaneous minimization of differences between the calculated and experimental ΔG values in a set of equations type (2). This procedure has the advantage of being little sensitive to missing data and of respecting the statistical significance of the regression coefficients. The parameters ΔP obtained show a good application ability in the definition models ${ }^{19,20}$.

The aim of this present communication is to evaluate the additive-multiplicative description of dependences in organic chemistry, to verify the applicability of the method of conjugated deviations to parametrizations of these relations, and, using a data set from the field of solvent effects, to evaluate the differences in physico-
-chemical interpretation of the results obtained from the aditive and from the additive-multiplicative models.

CALCULATIONS

The matrix selected for the analysis has already been used earlier in studies of solvent effects ${ }^{18,19}$; the columns containing small numbers of data were excluded (Nos 10 , 49, 219-225, 266, 286 according to ref. ${ }^{18}$). The calculations were carried out for the model without interactions with one, two, and three parameters, and for model (2) with two and three parameters. For the purposes of optimization of the parameters in model (2), the described algorithm ${ }^{19,20,25}$ was modified for calculation of regressions with involvement of the interaction terms. The calculations were carried out according to our own program in the FORTRAN language using an EC 1033 computer.

RESULTS AND DISCUSSION

The statistical significance of the difference between the additive and additive-multiplicative models can be evaluated on the basis of the residual deviations minimized in the method of conjugated deviations ${ }^{25}$. Mathematically, the residual deviations s are defined by Eq. (3)

$$
\begin{equation*}
s=\left[\sum_{i=1}^{n} \sum_{j=1}^{m} e_{i j}^{2} /\left(\sum_{j=1}^{m} N_{j}-n p-\sum_{j=1}^{m} \bar{P}_{j}\right)\right]^{1 / 2}, \tag{3}
\end{equation*}
$$

where n and m mean the numbers of rows and columns, respectively, of the data matrix, $e_{i j}$ are differences between the standardized experimental and calculated variables, N_{j} is the number of values in the j-th column of the data matrix (which need not be complete), and \bar{P}_{j} represents the number of statistically significant regression parameters (according to the t-test) in the regression with the data of the j-th column. Obviously, the denominator of the expression (3) represents the respective number of degrees of freedom. The residual standard deviations obtained together with other characteristics are given in Table I for both the models tested. The results show a peculiarity in that the number of degrees of freedom increases with the number of parameters involved in the additive model. This is a consequence of a greater increase of the interpretation ability of a model with a greater number of parameters as compared with the number of parameters (the number of combinations increases faster). At the same time this fact indicates a small number of parameters in the linear models for interpretation of the given experimental data or a possibility of cross-interactions in the sense of the additive-multiplicative model. This statement is supported by the data of Table I, since the number of the series interpreted by the additive-multiplicative model represented by the sum of the points
N is higher, increases more slowly, and approaches more closely the total number of points (6334) in the data matrix.

The magnitude of residual standard deviations from the calculations according to the models compared can be compared by the Fisher-Snedecor test (0)

$$
\begin{equation*}
F\left(v_{\mathrm{A}}, v_{\mathrm{AM}}\right)=\left(s_{\mathrm{A}}^{2} / v_{\mathrm{A}}\right) /\left(s_{\mathrm{AM}}^{2} / v_{\mathrm{AM}}\right), \tag{4}
\end{equation*}
$$

whose values are given in Table I. A significant decrease of residual standard deviation was observed at the significance level $\alpha=0.05$ for both the model with two independent parameters $\left(F_{0.95}=1 \cdot 048\right)$ and particularly that with three independent parameters $\left(F_{0.95}=1 \cdot 048\right)$. From another standpoint, when rejecting the agreement of the two models for $p=2$ we make an error of 0.43%, whereas for $p=3$ the error even will be less than $10^{-10 \%}$.

The introduction of cross-terms can also be understood as an extension of a model containing simple independent variables only. Then the contribution of the extension term can be evaluated in relation to the unexplained variability according to the formula ${ }^{25}$

$$
\begin{equation*}
F\left(v_{\mathrm{A}}-v_{\mathrm{AM}}, v_{\mathrm{AM}}\right)=\frac{S_{\mathrm{A}}-S_{\mathrm{AM}}}{S_{\mathrm{AM}}} \frac{v_{\mathrm{AM}}}{v_{\mathrm{A}}-v_{\mathrm{AM}}}, \tag{5}
\end{equation*}
$$

where S are the residual sums of squares (the numerator in the expression (3)) and v are the respective degrees of freedom. According to the relation (5) the contribution of cross-terms is univocally statistically significant for both the model with two $\left(F=11.79, F_{0.95}=1.40\right)$ and three independent parameters $\left(F=5.91, F_{0.95}=\right.$ $=1 \cdot 14$).

Beside the statistical tests, the significance of the additive-multiplicative model (as compared with the additive model) can be demonstrated on the number of statistically

Table I
Residual standard deviations s, degrees of freedom v, sums of numbers of points in statistically significant series N, and values of the criterion (4), obtained by the calculation according to the additive-multiplicative models with p independent parameters

p	Additive model			Aditive-multiplicative model			F
	s	v	N	s	v	N	
1	0.590	4483	5104	-	-	-	-
2	0.491	4919	5861	0.471	4880	5924	1.078
3	0.412	5014	6191	0.359	4688	6227	1.231

significant (according to the t-test) regression coefficients. Out of the total number of regressions, the regression coefficients for simple independent variables were significant in 53.5%, the regression coefficients for the cross-terms in $39 \cdot 2 \%$ of cases. Hence it can be stated that the additive-multiplicative model has its significance in description of extrathermodynamic relations.

An application of a data set oriented to solvent effects makes it possible to evaluate the differences in parametrization of the additive and additive-multiplicative models (Table II, Figs 1, 2). Especially from the graphical representation it is obvious that the general pattern of distribution of solvents within the parameters space has not substantially changed. Hence the physico-chemical interpretation of the parameters has not changed either: the PAC parameter describes the solvent polarity and acidity, PBC refers to solvent polarity and basicity, and PPC to solvent polarity and polarizability ${ }^{19}$. It is important that even when the cross-terms are applied, the solvent polarity is not manifested as an independent factor but operates always in connection with other fundamental properties ${ }^{9,18}$ such as acidity, basicity, or polarizability. This phenomenon has already been declared earlier for the solvent acidity and basicity ${ }^{18}$ and was observed with all the properties mentioned for the additive model ${ }^{19}$. As the solvent polarity is not manifested as an independent factor in most processes in solution, it should not be used independently for interpretation and prediction of solvent effect, and other properties of solvent should also be respected. At the same time, on the basis of the observation mentioned it can be stated that by chemometrical means inaccessible are the internal fundamental parameters of solvents

Fig. 1
Dislocation of solvents in the plane determined by the parameters PAC and PBC

Fig. 2
Dislocation of solvents in the plane determined by the parameters PPC and PBC

Table II
The statistical parameters PAC, PBC, and PPC for description of solvent effect with involved cross-terms, their standard deviations s, and numbers of statistically significant corrections M used to adjust the individual parameters (for mathematical definitions of s and M see ref. ${ }^{19}$)

No.	Solvent	$\begin{gathered} \text { PAC } \\ s \end{gathered}$	M	$\begin{gathered} \mathrm{PBC} \\ s \end{gathered}$	M	PPC s	M
1	Hexane	0.011	93	0.006	102	0.001	114
		0.061		0.073		0.066	
2	Heptane	0.007	43	0.000	42	0.014	49
		0.061		0.089		0.059	
3	Cyclohexane	0.014	105	0.028	139	0.060	135
		0.073		0.074		0.080	
4	Benzene	0.046	123	0.267	128	0.470	158
		0.075		$0 \cdot 116$		0.072	
5	Toluene	0.041	79	$0 \cdot 252$	79	0.426	98
		0.085		0.047		0.069	
6	m-Xylene	$0 \cdot 005$	16	0.207	23	0.363	22
		$0 \cdot 127$		$0 \cdot 105$		0.103	
7	p-Xylene	$0 \cdot 012$	32	0.231	45	$0 \cdot 377$	51
		0.071		0.066		0.086	
8	Mesitylene	0.001	29	$0 \cdot 201$	33	$0 \cdot 358$	36
		0.084		0.097		0.066	
9	Tetrachloromethane	$0 \cdot 055$	117	0.074	132	0.276	142
		$0 \cdot 117$		$0 \cdot 151$		0.068	
10	Chloroform	0.259	101	0.289	107	$0 \cdot 652$	116
		$0 \cdot 116$		0.095		$0 \cdot 121$	
11	Dichloromethane	$0 \cdot 217$	109	0.414	113	$0 \cdot 664$	125
		$0 \cdot 104$		$0 \cdot 117$		$0 \cdot 149$	
12	1,2-Dichloroethane	$0 \cdot 210$	87	0.442	91	0.666	108
		0.093		0.068		0.067	
13	Chlorobenzene	$0 \cdot 106$	78	0.287	72	0.633	89
		0.064		0.068		$0 \cdot 281$	
14	Bromobenzene	0.104	51	0.297	58	$0 \cdot 628$	64
		$0 \cdot 106$		0.090		$0 \cdot 113$	
15	Fluorobenzene	$0 \cdot 121$	16	$0 \cdot 303$	23	$0 \cdot 582$	24
		0.083		$0 \cdot 121$		0.071	
16	Diethyl ether	$0 \cdot 077$	109	0.423	113	$0 \cdot 203$	139
		$0 \cdot 101$		0.064		0.098	

[^0]Table II
(Continued)

No.	Solvent	$\begin{gathered} \text { PAC } \\ s \end{gathered}$	M	PBC s	M	PPC S	\boldsymbol{M}
17	Dibutyl ether	$0 \cdot 052$	47	$0 \cdot 319$	55	$0 \cdot 170$	58
		0.097		$0 \cdot 086$		$0 \cdot 137$	
18	Diisopropyl ether	0.080	19	$0 \cdot 399$	17	$0 \cdot 181$	26
		$0 \cdot 064$		0.060		0.101	
19	Anisol	$0 \cdot 105$	37	0.427	43	$0 \cdot 575$	43
		0.095		0.090		0.089	
20	Fenethol	0.076	14	0.539	16	$0 \cdot 508$	20
		$0 \cdot 122$		$0 \cdot 250$		$0 \cdot 222$	
21	Tetrahydrofuran	0.085	97	$0 \cdot 587$	109	0.427	128
		0.074		0.095		$0 \cdot 105$	
22	Dioxane	0.086	119	$0 \cdot 532$	120	$0 \cdot 440$	148
		$0 \cdot 115$		$0 \cdot 152$		0.109	
23	Acetone	$0 \cdot 159$	128	$0 \cdot 707$	124	$0 \cdot 551$	150
		$0 \cdot 141$		0.108		$0 \cdot 125$	
24	Butanone	$0 \cdot 172$	47	0.630	51	$0 \cdot 518$	62
		$0 \cdot 106$		$0 \cdot 163$		$0 \cdot 091$	
25	Cyclohexane	$0 \cdot 140$	34	$0 \cdot 647$	30	$0 \cdot 540$	45
		0.089		0.070		0.074	
26	Methyl acetate	$0 \cdot 191$	36	$0 \cdot 610$	40	$0 \cdot 394$	46
		$0 \cdot 098$		$0 \cdot 148$		$0 \cdot 105$	
27	Ethyl acetate	$0 \cdot 112$	106	0.562	113	0.411	127
		$0 \cdot 105$		0.093		$0 \cdot 102$	
28	Acetanhydride	$0 \cdot 364$	19	0.692	17	$0 \cdot 632$	21
		0.271		$0 \cdot 121$		0.162	
29	Formamide	0.643	40	0.773	35	0.963	42
		$0 \cdot 157$		0.223		$0 \cdot 171$	
30	N,N-Dimethylformamide	$0 \cdot 177$	115	0.859	121	$0 \cdot 658$	140
		0.068		0.085		0.079	
31	N,N-Dimethylacetamide	$0 \cdot 145$	64	0.889	57	0.620	67
		$0 \cdot 136$		$0 \cdot 110$		0.088	
32	Hexamethylphosphorus triamide	$0 \cdot 018$	50	1.000	45	$0 \cdot 565$	58
		$0 \cdot 196$		$0 \cdot 165$		$0 \cdot 240$	
33	Acetonitrile	$0 \cdot 251$	131	$0 \cdot 745$	133	0.644	172
		0.188		$0 \cdot 155$		$0 \cdot 152$	

Table II
(Continued)

No.	Solvent	$\begin{gathered} \text { PAC } \\ s \end{gathered}$	M	$\begin{gathered} \text { PBC } \\ s \end{gathered}$	M	$\begin{gathered} \text { PPC } \\ s \end{gathered}$	M
34	Benzonitrile	$0 \cdot 181$	43	0.569	45	$0 \cdot 710$	59
		$0 \cdot 163$		0.084		$0 \cdot 174$	
35	Water	1.000	71	$0 \cdot 826$	60	$1 \cdot 000$	82
		0.086		$0 \cdot 112$		$0 \cdot 101$	
36	Methanol	$0 \cdot 663$	126	0.672	114	0.623	147
		0.130		$0 \cdot 127$		0.104	
37	Ethanol	0.582	116	0.660	98	0.533	182
		0.097		0.071		0.097	
38	1-Butanol	0.534	84	0.619	68	0.486	88
		0.092		0.092		0.151	
39	2-Propanol	0.527	99	0.633	80	0.493	106
		0.080		0.082		0.099	
40	2-Methyl-2-propanol	0.430	66	0.595	55	0.430	71
		$0 \cdot 135$		$0 \cdot 192$		$0 \cdot 127$	
41	Benzyl alcohol	0.549	47	$0 \cdot 681$	39	0.766	54
		$0 \cdot 138$		$0 \cdot 126$		$0 \cdot 194$	
42	1,2-Ethanediol	0.733	57	0.791	51	0.831	66
		$0 \cdot 117$		0.099		0.122	
43	2-Methoxyethanol	$0 \cdot 501$	23	0.737	17	0.635	27
		0.135		0.088		$0 \cdot 158$	
44	Acetic acid	0.774	46	$0 \cdot 591$	39	$0 \cdot 654$	42
		$0 \cdot 181$		$0 \cdot 154$		0.109	
45	Triethylamine	$0 \cdot 002$	43	$0 \cdot 359$	57	0.000	62
		$0 \cdot 156$		$0 \cdot 250$		0.180	
46	Pyridine	0.125	72	0.694	80	0.638	9
		$0 \cdot 162$		0.272		0.191	
47	Nitromethane	$0 \cdot 295$	72	0.668	81	0.753	95
		$0 \cdot 159$		$0 \cdot 244$		$0 \cdot 131$	
48	Nitrobenzene	$0 \cdot 171$	57	$0 \cdot 522$	55	0.737	76
		0.092		0.079		$0 \cdot 103$	
49	Dimethyl sulfoxide	$0 \cdot 243$	115	0.941	120	0.749	135
		$0 \cdot 201$		0.150		0.060	
50	Sulfolane	$0 \cdot 231$	18	0.787	19	0.773	26
		0.108		0.167		0.094	
51	Carbon disulfide	$0 \cdot 000$	45	$0 \cdot 163$	55	0.489	58
		$0 \cdot 127$		$0 \cdot 036$		$0 \cdot 159$	

Collest. Czech. Chem. Commun. (Vol. 55) (1990)
(denoted as π in the previous paper ${ }^{19}$) whose combination represents the chemometrically determined empirical parameters in the respective models. Nevertheless it is meaningful to consider these fundamental parameters, because they can be defined by theoretical means and thus form a connection between the exactly theoretically defined quantities ${ }^{9}$ and experimental observation.

The correlation between the parameters observed in the additive model ${ }^{19}$ has decreased markedly by introduction of the cross-terms, viz. the dependence between the parameters of the type PA and PB from $r=0.551$ to 0.306 , that of the type PA and PP from $r=0.549$ to $r=0.254$, and that of the type PB and PP from $r=0.805$ to $r=0.548$. The lowering of correlation is particularly significant for the parameters describing polarity-basicity (PB) and those describing polarity--polarizability (PP) represented in Fig. 2, since it makes more distinct the classification of solvents with predominant basicity or, on the contrary, predominant polarizability. Both figures show that it is impossible to mechanically transfer the ideas about acidity (acetic acid) or basicity (triethylamine) usually obtained from measurements in water to the properties of these molecules simultaneously acting as solvent.

When applying the parameters of Table II to the definition set we have found for the PAC parameters - the absolute average regression coefficient of $11 \cdot 3$, those for the PBC and PPC parameters being 4.8 and $5 \cdot 1$, respectively. As the parameters are standardized in the interval $\langle 0,1\rangle$, the values given represent a measure of sensitivity of processes in solvents to the individual properties of solvent. In accordance with ref. ${ }^{18}$ this sensitivity is the highest for acidity in combination with polarity, of course in processes in which acidity is manifested (about 50% of cases according to the statistical significance of regression parameter).

REFERENCES

1. Wold S.: Chem. Scr. 5, 97 (1974).
2. Wold S., Sjöström M.: Chem. Scr. 2, 49 (1972).
3. Sjöström M., Wold S.: Chem. Scr. 6, 114 (1974).
4. Sjöström M., Wold S.: Acta Chem. Scand., B 30, 167 (1976).
5. Sjöström M., Wold S.: Chem. Scr. 9, 200 (1976).
6. Palm V. A.: Osnovy kolichestvennoi teorii organicheskikh reaktsii. Khimiya, Leningrad 1977.
7. Shorter J., Chapman N. B. (Eds): Correlation Analysis in Chemistry: Recent Advances. Plenum Press, New York 1978.
8. Shorter J.: Correlation Analysis of Organic Reactivity. Wiley, New York 1982.
9. Reichardt C.: Solvent Effects in Organic Chemistry, 2nd ed. Verlag Chemie, Weinheim 1988.
10. Exner O.: Correlation Analysis of Chemical Data. Plenum, New York; SNTL, Prague 1988.
11. Sjöström M., Wold S.: Acta Chem. Scand., B 35, 537 (1981).
12. Kramer C.-R.: Z. Phys. Chem. (Leipzig) 26I, 745 (1980).
13. Swain G. G., Unger S. H., Rosenquist N. R., Swain M. S.: J. Am. Chem. Soc. 105, 492 (1983).
14. Spajner M. C., DeLigny C. L.: J. Chem. Res. (M) 1986, 1701.
15. Exner O., Budě̌ínský M.: Magn. Reson. Chem. 27, 27 (1989).
16. Kamlet M. J., Abboud J.-L. M., Taft R. W.: Prog. Phys. Org. Chem. 13, 485 (1981).
17. Swain C. G., Swain M. S., Powell A. L., Alunni S.: J. Am. Chem. Soc. 105, 502 (1983).
18. Pytela O.: Collect. Czech. Chem. Commun. 53, 1333 (1988).
19. Pytela O.: Collect. Czech. Chem. Commun. 54, 136 (1989).
20. Pytela O., Zima V.: Collect. Czech. Chem. Commun. 54, 117 (1989).
21. Exner O.: Collect. Czech. Chem. Commun. 41, 1516 (1981).
22. Malinowski E. R., Howery D. G.: Factor Analysis in Chemistry. Wiley, New York 180.
23. Massart D. L., Vandeginste B. G. M., Deming S. N., Michotta Y., Kaufman L.: Chemometrics. Elsevier, Amsterdam 1988.
24. Wold S., Geladi P., Esbensen K., Öhman J.: J. Chemometrics 1, 41 (1987).
25. Pytela O.: Collect. Czech. Chem. Commun. 55, 42 (1990).

Translated by J. Panchartek.

[^0]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

